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The finite set of rate equations

C′m,n(t) = αn,n−1Cm,n−1(t) + αn,nCm,n(t) + αn,n+1Cm,n+1(t),

0 6 m 6 N , 0 6 n 6 N ,

where αi,j are αj,j−1 = A, αj,j = −(A + B), αj,j+1 = B, with α0,0 = −α1,0 = −a
and αN ,N = −αN−1,N = −b, α0,−1 = αN ,N+1 = 0, subject to the initial condition
Cm,n(0) = δn,m (Kronecker delta) for some m, arises in a number of applications of
mathematics and mathematical physics. We show that there are five sets of values of a and
b for which the above system admits exact transient solutions.

1. Introduction

The interest in the fluctuations and in the stochastic methods describing them has
grown enormously. One-step (or generation–recombination or birth–death) processes
are a special class of Markov processes, having applications in diverse physical
problems such as gas phase relaxation processes, chemical kinetics, spin relaxation
processes and polymer dynamics [3,5,7,13,17,19]. In particular, the system of equa-
tions

C ′m,0(t) =−aCm,0(t) +BCm,1(t),

C ′m,1(t) = aCm,0(t)− (A+B)Cm,1(t) +BCm,2(t),

C ′m,n(t) =ACm,n−1(t)− (A+B)Cm,n(t) +BCm,n+1(t),
(1.1)

2 6 n 6 N − 2,

C ′m,N−1(t) =ACm,N−2(t)− (A+B)Cm,N−1(t) + bCm,N (t),

C ′m,N (t) =ACm,N−1(t)− bCm,N (t),

subject to the initial condition Cm,n(0) = δn,m (Kronecker delta) for some m, arises in
a number of applications of mathematics and mathematical physics [1,15,16]. Special
cases of these equations have already received considerable attention [4,21]. Ninham
et al. [12] have discussed this system to describe the kinetics of the helix–coil transition
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in polypeptides, when it is assumed that helical regions nucleate at one end of the coil
and thereafter grow towards the other end of the molecule. Then Cm,n(t) represent
the concentration of molecules containing n “helix” and N − n “coil” units at time t,
given that there were m helix units initially. Here N denotes the chain length. At any
time, the rate at which the number of helix units increase from n to n+ 1 is described
by A, and the rate at which the number of helix units decrease from n to n − 1 is
described by B. Also, the rates at which the number of helix units increase from 0 to
1 and decrease from N to N − 1 are described by a and b, respectively.

In this paper we obtain exact time-dependent solutions of system (1.1) with a 6= A
and b 6= B. Transient analysis helps us to understand the behaviour of a system better
when the parameters are perturbed. For all values of a and b it is possible to find
transient solutions of this system numerically. In order to achieve the exact transient
solution of this system analytically, we consider the cases where

a ∈
{
A,A+

√
AB,A−

√
AB

}
, b ∈

{
B,B +

√
AB,B −

√
AB

}
.

To ensure the positivity of the parameters we discard the case a = A −
√
AB, b =

B−
√
AB. These transient solutions are the same when a, A and Cm,n(t) are replaced

by b, B and Cm,N−n(t), respectively. Because of this symmetric nature, the remaining
eight cases reduce to five cases. In section 3, the exact transient solutions are obtained
for these five cases and the equilibrium solutions are deduced.

In addition to the helix–coil transition problem such as the effect of defects,
the explicit solution to equations (1.1) may also be of value as it provides a model
calculation in the theory of multi-state relaxation processes; errors introduced by the
replacement of equations (1.1) by the continuum analog (viz. the Fokker–Planck equa-
tion) can be bounded precisely. The model can also be used to test the utility of the
concept of “mean relaxation time”. When a = A and b = B, this system of equations
appears in the theory of queues [22]. If A = B and periodic boundary conditions are
imposed, the equations describe a one-dimensional symmetric continuous-time random
walk on a circle. In the latter form, the equations have been studied in connection with
the relaxation of a one-dimensional Ising model and in describing the denaturation of
DNA. When A = B and the rate constants a and b in the equations for C ′m,1(t) and
C ′m,N−1(t) are replaced by A, the eigenvalues of the system are identical with those
of a one-dimensional system of coupled harmonic oscillators with either free or fixed
ends [12]. Equations (1.1) are used to obtain the velocity and the diffusion constant
for a periodic one-dimensional hopping model [2].

2. Some useful identities

In this section, some identities and polynomials used to prove the main results
are given.
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Identity 1.∣∣∣∣∣∣∣∣∣∣
2 cos θ 1 · · · · · ·

1 2 cos θ 1 · · · · ·
· · · · · · · ·
· · · · · 1 2 cos θ 1
· · · · · · 1 2 cos θ

∣∣∣∣∣∣∣∣∣∣
n×n

=
sin(n+ 1)θ

sin θ
, n > 1. (2.1)

Identity 2.

N∏
k=1

(
cos y − cos

kπ

N + 1

)
= 2−N

sin(N + 1)y
sin y

. (2.2)

We obtain the above identity by making use of the following trigonometric iden-
tities ((91.2.9) and (91.2.13) from [6]):

[(n−1)/2]∏
k=1

(
cos y − cos

2kπ
n

)
=

{
2(1/2)−n/2 sin

(ny
2

)
csc
(y

2

)
(n odd),

21−(n/2) sin
(ny

2

)
csc y (n even),

[(n−1)/2]∏
k=0

{
cos y − cos

[
(2k + 1)

π

n

]}
=

{
2(1/2)−n/2 cos

(ny
2

)
sec
(y

2

)
(n odd),

21−(n/2) cos
(ny

2

)
(n even).

Identity 3.

N∏
k=1
k 6=r

(
cos

rπ

N
− cos

kπ

N

)
=
N (−1)r+1

2(N−1) ×
{

1+cos(rπ/N )
sin2(rπ/N ) , r < N ,

1, r = N .
(2.3)

The transient solution of (1.1) will be expressed in terms of two sequences of
polynomials. Define the polynomials Qr(s) (r = 1, 2, . . . ,N ) recursively as

Q0(s) = 1,

Q1(s) = s+ b,

Q2(s) = (s+A+B)Q1(s)−Ab,
Qr(s) = (s+A+B)Qr−1(s)−ABQr−2(s), 3 6 r 6 N , (2.4)

QN+1(s) = (s+ a)QN (s)− aBQN−1(s). (2.5)

The above can be expressed in terms of the polynomials Pr(s) (r = 1, 2, . . . ,N ) and
are defined recursively as

P0(s) = 1,

P1(s) = s+ a,

P2(s) = (s+A+B)P1(s)− aB,
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Pr(s) = (s+A+B)Pr−1(s)−ABPr−2(s), 3 6 r 6 N , (2.6)

PN+1(s) = (s+ b)PN (s)−AbPN−1(s). (2.7)

Here Pr(s) and Qr(s) are of degree r with coefficient 1 for sr. Further, we use the
following notation:

Dm,n =


aAn−1, m = 0, n > 0,

bBN−n−1, m = N , n < N ,

1, m = n,

and, for 1 6 m 6 N − 1,

Dm,n =

{
Bm−n, n < m,

An−m, n > m.
(2.8)

Now we obtain the exact transient solution of the concentration of molecules at time t.

3. Transient solution

In this section, we obtain the transient solution of system (1.1) analytically with
a 6= A, b 6= B. This is in contrast to the computational difficulties encountered when
the diagonal elements of the underlying matrix become large, for some values of the
parameters, causing overflow while running the program. When a = A and b = B,
there exist a number of methods to find the time dependent solution of (1.1) like the
fundamental matrix approach of Takács [22], transformation approach of Morse [11],
Laplace transform method of Srivatsava and Kashyap [20] and continued fraction ap-
proach of Parthasarathy and Lenin [16]. These techniques involve matrix exponentials
which are extensively studied [8–10]. However, we adopt suitably the method of
Rosenlund [18], which is more pertinent to the problem at hand.

Theorem 1. The exact transient solution of the concentration of molecules at time t
is given for 0 6 m 6 N by

Cm,n(t) = Cn +
∑N

r=1
Dm,NDN ,nPn(−βr)Pm(−βr) exp(−βrt)

PN (−βr)P ′N+1(−βr) ,

n = 0, 1, . . . ,N ,
(3.1)

where

Cn =
Dm,NDN ,nPn(0)Pm(0)

PN (0)
(∏N

r=1 βr
) , (3.2)

P ′N+1(−βr) = −βr
N∏
k=1
k 6=r

(βk − βr), r = 1, 2, . . . ,N. (3.3)

Dm,n are defined as in (2.8) and βr are the zeros of PN+1(s).
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Proof. Letting, for s > 0,

Ĉm,n(s) =

∫ ∞
0

e−stCm,n(t) dt, (3.4)

Laplace transformation of (1.1) gives

sĈm,0(s)− δ0,m =−aĈm,0(s) +BĈm,1(s),

sĈm,1(s)− δ1,m = aĈm,0(s)− (A+B)Ĉm,1(s) +BĈm,2(s),

sĈm,n(s)− δn,m =AĈm,n−1(s)− (A+B)Ĉm,n(s) +BĈm,n+1(s),
(3.5)

2 6 n 6 N − 2,

sĈm,N−1(s)− δN−1,m =AĈm,N−2(s)− (A+B)Ĉm,N−1(s) + bĈm,N−1(s),

sĈm,N (s)− δN ,m =AĈm,N−1(s)− bĈm,N (s).

For each m this defines a linear system with N + 1 equations. Define its N + 1 by
N + 1 matrix E(s) (= (am,n)) as

E(s) =


s+ a −B · · · · · ·
−a s+A+B −B · · · · ·
· −A s+A+B −B · · · ·
· · · · · · · ·
· · · · · −A s+A+B −b
· · · · · · −A s+ b

 .

Then we can write (3.5) in the matrix form:

E(s)
[
Ĉm,0(s), Ĉm,1(s), . . . , Ĉm,N (s)

]T
= [δ0,m, δ1,m, . . . , δN ,m]T. (3.6)

From (2.7) and (2.5), we observe that PN+1(s) = QN+1(s) = |E(s)|, i.e.,

PN+1(s) =

∣∣∣∣∣∣∣∣∣∣∣

s+ a −B · · · · · ·
−a s+A+B −B · · · · ·
· · · · · · · ·
· · · · · −A s+A+B −b
· · · · · · −A s+ b

∣∣∣∣∣∣∣∣∣∣∣

= s

∣∣∣∣∣∣∣∣∣∣∣

s+ a+B B · · · · · ·
A s+A+B B · · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+ b

∣∣∣∣∣∣∣∣∣∣∣
N

.

It is well known that PN+1(s) has N + 1 distinct, real zeros

β0 < β1 < · · · < βN (3.7)
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and β0 = 0; then we can write

PN+1(s) = s
N∏
r=1

(s+ βr). (3.8)

By (3.7), |E(s)| > 0 and (3.6) has a unique solution for s > 0. The solution of (3.6)
by Cramer’s rule is written as

Ĉm,n(s) =
B̂m,n(s)
|E(s)| , (3.9)

where B̂m,n(s) is obtained from |E(s)| by replacing the nth column with [δ0,m, δ1,m, . . . ,
δN ,m]T. Thus B̂m,n(s) is the cofactor of the element am,n, and this is easily found to
be

B̂m,n(s) = Dm,n ×


Pn(s)QN−m(s), n < m,

Pm(s)QN−n(s), n > m,

Pn(s)QN−n(s), n = m,

where Dm,n, Pn(s) and Qn(s) are defined as in (2.8), (2.6) and (2.4), respectively.
Substituting the above in (3.9), we get

Ĉm,n(s) =
Dm,nQN−max(m,n)(s)Pmin(m,n)(s)

PN+1(s)
, 0 6 m 6 N , 0 6 n 6 N.

Using (3.8), the inversion of the above gives

Cm,n(t) = Cn +
N∑
r=1

bm,n,r exp(−βrt), (3.10)

where

bm,n,r =
Dm,nQN−max(m,n)(−βr)Pmin(m,n)(−βr)

P ′N+1(−βr)
(3.11)

and Cn is defined as in (3.2). Note that the term corresponding to r = 0 and β0 = 0
is the limit of Cm,n(t) as t→∞ and, hence, equal to Cn. Also note that, at the zeros
of PN+1(s),

QN−n(−βr) =
Dm,NDN ,nPm(−βr)
Dm,nPN (−βr)

.

Substituting the above in (3.11), we obtain

bm,n,r =
Dm,NDN ,nPn(−βr)Pm(−βr)

PN (−βr)P ′N+1(−βr)
. (3.12)

Theorem follows by substituting the above in (3.10). �
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In view of the representation formula (3.1), the problem of finding the transient
solution for the system given its rate parameters amounts to finding the orthogonal
polynomials Pn(s) (n = 1, . . . ,N ) and the zeros of PN+1(s) from the parameters in
the recurrence relations. Often it will be difficult to find the transient solution for such
systems explicitly. In the next theorem, we find the explicit expression for Pn(s).

Explicit expression of Pn(s)

Theorem 2. For n = 1, 2, . . . ,N ,

Pn(s) =
(AB)n/2

sin θ

{
sin(n+ 1)θ −

(
A+B − a√

AB

)
sinnθ

+

(
A− a
A

)
sin(n− 1)θ

}
, (3.13)

where s+A+B = 2
√
AB cos θ.

Proof. From (2.6), we find for n = 1, 2, . . . ,N ,

Pn(s) =

∣∣∣∣∣∣∣∣∣∣∣

s+ a B · · · · · ·
a s+A+B B · · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+B

∣∣∣∣∣∣∣∣∣∣∣
n

=

∣∣∣∣∣∣∣∣∣∣∣

s+A+B B · · · · · ·
A s+A+B B · · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+B

∣∣∣∣∣∣∣∣∣∣∣
n

+

∣∣∣∣∣∣∣∣∣∣∣

a−A−B B · · · · · ·
a−A s+A+B B · · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+B

∣∣∣∣∣∣∣∣∣∣∣
n

. (3.14)

By dividing
√
AB in each row or each column, putting s+A+B = 2

√
AB cos θ and

using relation (2.1), we obtain

Pn(s) =
1

sin θ

[(√
AB

)n
sin(n+ 1)θ − (A+B − a)

(√
AB

)n−1
sinnθ

+B(A− a)
(√
AB

)n−2
sin(n− 1)θ

]
.

Therefore (3.13) follows. �
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Exact zeros of PN+1(s)

Solution (3.1) is completely known if we have the exact zeros of PN+1(s). We
show that there are five sets of values for a and b for which exact solutions are possible
to obtain. Now we obtain the exact zeros of PN+1(s) for the five cases.

Writing (2.7) in the matrix form, we obtain

PN+1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ a B · · · · · ·
a s+A+B B · · · · ·
· A s+A+B B · · · ·
· · · · · · · ·
· · · · · A s+A+B b

· · · · · · A s+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣
N+1

= s

∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ a+B B · · · · · ·
A s+A+B B · · · · ·
· A s+A+B B · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣
N

.

By dividing
√
AB in each row or each column, putting s+A+B = 2

√
AB cos θ and

using identity (2.1), we get

PN+1(s) = s
(AB)N/2

sin θ

{
sin(N + 1)θ +

(
a+ b− (A+B)√

AB

)
sinNθ

+
(a−A)(b−B)

AB
sin(N − 1)θ

}
. (3.15)

From the right-hand side of the above equation, we observe that zero is a root of
PN+1(s) so that β0 = 0. Remaining N zeros can be obtained from the following
equation:

sin(N + 1)θ +

(
a+ b− (A+B)√

AB

)
sinNθ +

(a−A)(b−B)
AB

sin(N − 1)θ = 0.

We are interested to obtain the roots of the above equation (in turn, the values
of θ) in closed form. We observe that, if

a ∈
{
A,A+

√
AB,A−

√
AB

}
, b ∈

{
B,B +

√
AB,B −

√
AB

}
,

using the trigonometric relation

sin(A−B)θ + sin(A+B)θ = 2 sinAθ cosBθ (3.16)

we can obtain the roots in closed form. This leads to nine possible cases of a and b
for which exact zeros βr (r = 1, 2, . . . ,N ) are possible to obtain, but to ensure the
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Table 1
Five cases of a and b and the corresponding zeros of PN+1(s).

Case a b βr (0 6 r 6 N)

I A B 0, A+B − 2
√
AB cos

(
r

N+1π
)

, A,B > 0

II A+
√
AB B 0, A+B − 2

√
AB cos

(
2r

2N+1π
)

, A,B > 0

III A+
√
AB B +

√
AB 0, A+B − 2

√
AB cos

(
r
N π
)

, A,B > 0

IV A−
√
AB B 0, A+B − 2

√
AB cos

(
2r−1
2N+1π

)
, A > B > 0

V A−
√
AB B +

√
AB 0, A+B − 2

√
AB cos

(
2r+1
2N+1π

)
, A > B > 0

positivity of the rates we discard the case a = A−
√
AB, b = B−

√
AB. We observe

that equation (3.15) is symmetric with respect to a and b. Also, system (1.1) is the same
when a, A and Cm,n(t) are replaced by b, B and Cm,N−n(t), respectively. Because
of this symmetric nature, the eight cases reduce to five cases. The zeros of PN+1(s)
and the conditions on A and B to ensure the positiveness are tabulated in table 1.

Equilibrium solutions

Since one of the zeros of PN+1(s) is zero (i.e., β0 = 0), equilibrium solutions
Cn (n = 0, 1, . . . ,N ) exist and are obtained by letting t→∞ in (1.1):

C0 =BbF ,

Cn = abγn−1F , n = 1, 2, . . . ,N − 1, (3.17)

CN = aBγN−1F ,

where

γ=
A

B
,

F =
(1− γ)

B2(1− γN+1) +B(A+B − a− b)(1− γN ) + (A− a)(B − b)(1− γN−1)
.

Now, we shall see the exact results for the five cases in the following theorems.

Explicit solutions of Cm,n(t)

Theorem 3. The exact transient solution for case I (i.e., a = A, b = B) is given by

Cm,n(t) =
(1− γ)γn

(1− γN+1)
+

2γ1+(n−m)/2

N + 1

N∑
r=1

e−(A+B)t+2
√
ABt cos(rπ/(N+1))

1− 2
√
γ cos rπ

N+1 + γ

×
{

sin
(n+ 1)rπ
N + 1

− γ−1/2 sin
nrπ

N + 1

}
×
{

sin
(m+ 1)rπ
N + 1

− γ−1/2 sin
mrπ

N + 1

}
, n = 0, 1, . . . ,N.
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This can be identified with the solution of Takács [22].
We now present the results for the other cases. In all these results we use the

same notation Pn(−βr) for the sake of brevity. We prove the result for one case.
Proofs for other cases are similar.

Theorem 4. The exact transient solution for case III (i.e., a = A +
√
AB, b =

B +
√
AB) is given by

Cm,n(t) = Cn +
N∑
r=1

Dm,NDN ,nPn(−βr)Pm(−βr)e−βrt
PN (−βr)P ′N+1(−βr)

, n = 0, 1, . . . ,N ,

where for r = 1, 2, . . . ,N ,

βr =A+B − 2
√
AB cos

rπ

N
, (3.18)

Pn(−βr) =
(AB)n/2

sin rπ
2N

{
sin

(2n+ 1)rπ
2N

− γ−1/2 sin
(2n− 1)rπ

2N

}
, (3.19)

PN (−βr) = (−1)r+2B
(
A+
√
AB

)
(AB)(N−2)/2, (3.20)

P ′N+1(−βr) =

(
A+B − 2

√
AB cos

rπ

N

)
(−1)r+2N

(√
AB

)N−1

×
{

1+cos(rπ/N )
sin2(rπ/N ) , r = 1, 2, . . . ,N − 1,

(−1), r = N ,
(3.21)

where Cn and Dm,n are defined as in (3.17) and (2.8), respectively.

Proof. By virtue of (3.1), it is enough to find the exact expression for Pn(−βr),
PN (−βr) and P ′N+1(−βr). Substituting (3.18), a = A +

√
AB and b = B +

√
AB

in (3.13), we get

Pn(−βr) =
(AB)n/2

sin rπ
N

{
sin

(n+ 1)rπ
N

−
(
B −

√
AB√

AB

)
sin

nrπ

N

−
(√

AB

A

)
sin

(n− 1)rπ
N

}
=

(AB)n/2

sin rπ
N

{
sin

(n+ 1)rπ
N

+ sin
nrπ

N

− γ−1/2
(

sin
nrπ

N
+ sin

(n− 1)rπ
N

)}
.
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By using the trigonometric relation (3.16), we obtain (3.19). Substituting a = A +√
AB in (3.14),

PN (s) =

∣∣∣∣∣∣∣∣∣∣∣∣

s+A+
√
AB B · · · · · ·

A+
√
AB s+A+B B · · · · ·
· · · · · · · ·
· · · · · A s+A+B B

· · · · · · A s+A+B

∣∣∣∣∣∣∣∣∣∣∣∣
N

=
(
s+A+

√
AB

)N−1∏
k=1

(
s+A+B − 2

√
AB cos

kπ

N

)

−B
(
A+
√
AB

)N−2∏
k=1

(
s+A+B − 2

√
AB cos

kπ

N − 1

)
.

At the zeros of PN+1(s), the above equation reduces to

PN (−βr) = 0−B
(
A+
√
AB

)(
2
√
AB

)N−2
N−2∏
k=1

(
cos

rπ

N
− cos

kπ

N

)
.

We obtain (3.20) by suitably using identity (2.2) in the above equation. Finally, we
find the explicit expression of P ′N+1(−βr). From (3.3), we get

P ′N+1(−βr) = −
(
A+B − 2

√
AB cos

rπ

N

) N∏
k=1
k 6=r

(
2
√
AB

)(
cos

rπ

N
− cos

kπ

N

)
.

When r = N , the above equation reduces to

P ′N+1(−βN ) = −
(
A+B + 2

√
AB

)(
2
√
AB

)N−1
N−1∏
k=1

(
−1− cos

kπ

N

)
.

Making use of identity (2.3), we get

P ′N+1(−βN ) = −
(
A+B + 2

√
AB

)
N
(√
AB

)N−1
(−1)N+1. (3.22)

For the remaining r = 1, 2, . . . ,N − 1, equation (3.3) becomes

P ′N+1(−βr) =−
(
A+B − 2

√
AB cos

rπ

N

)(
2
√
AB

)N−1
(

cos
rπ

N
+ 1

)
×
N−1∏
k=1
k 6=r

(
cos

rπ

N
− cos

kπ

N

)
.
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By making use of identity (2.3), we obtain

P ′N+1(−βr) =

(
A+B − 2

√
AB cos

rπ

N

)
(−1)r+2N (

√
AB )N−1

(
1 + cos rπN

)
sin2 rπ

N

.

Combining the above result and (3.22), we get (3.21). �

Theorem 5. The exact transient solution for case II (i.e., a = A +
√
AB, b = B) is

given by

Cm,n(t) = Cn +
N∑
r=1

Dm,NDN ,nPn(−βr)Pm(−βr)e−βr
PN (−βr)P ′N+1(−βr)

, n = 0, 1, . . . ,N ,

where for r = 1, 2, . . . ,N ,

βr =A+B − 2
√
AB cos

2rπ
2N + 1

,

Pn(−βr) =
(AB)n/2

sin rπ
2N+1

{
sin(2n+ 1)

rπ

2N + 1
− γ−1/2 sin(2n− 1)

rπ

2N + 1

}
,

PN (−βr) = (−1)r+2B(AB)(N−1)/22 cos
rπ

2N + 1
,

P ′N+1(−βr) =
(2N + 1)

(
A+B − 2

√
AB cos 2rπ

2N+1

)
(−1)r+2(

√
AB )N−1

4 sin 2rπ
2N+1 sin rπ

2N+1

,

where Cn and Dm,n are defined as in (3.17) and (2.8), respectively.

Theorem 6. The exact transient solution for case IV (i.e., a = A−
√
AB, b = B) is

given by

Cm,n(t) = Cn +
N∑
r=1

Dm,NDN ,nPn(−βr)Pm(−βr)e−βrt
PN (−βr)P ′N+1(−βr)

, n = 0, 1, . . . ,N ,

where for r = 1, 2, . . . ,N ,

βr =A+B − 2
√
AB cos

(2r − 1)π
2N + 1

,

Pn(−βr) =
(AB)n/2

cos (2r−1)π
2(2N+1)

{
cos

(2n+ 1)(2r − 1)π
2(2N + 1)

− γ−1/2 cos
(2n− 1)(2r − 1)π

2(2N + 1)

}
,

PN (−βr) =−B(AB)(N−1)/2
sin (2N−1)(2r−1)π

2(2N+1)

sin (2r−1)π
2(2N+1)

,

P ′N+1(−βr) =−
(√
AB

)N−1
(2N + 1)(−1)r+1

(
A+B − 2

√
AB cos (2r−1)π

2N+1

)
4 sin (2r−1)π

(2N+1) cos (2r−1)π
2(2N+1)

,

where Cn and Dm,n are defined as in (3.17) and (2.8), respectively.
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Theorem 7. The exact transient solution for case V (i.e., a = A −
√
AB, b = B +√

AB) is given by

Cm,n(t) = Cn +
N∑
r=1

Dm,NDN ,nPn(−βr)Pm(−βr)e−βrt
PN (−βr)P ′N+1(−βr)

, n = 0, 1, . . . ,N ,

where for r = 1, 2, . . . ,N ,

βr =A+B − 2
√
AB cos

(2r + 1)π
2N + 1

,

Pn(−βr) =
(AB)n/2

cos (2r+1)π
2(2N+1)

{
cos

(2n + 1)(2r + 1)π
2(2N + 1)

− γ−1/2 cos
(2n− 1)(2r + 1)π

2(2N + 1)

}
,

Pn(−βr) =−
√
AB
(
2
√
AB

)N−1
N−1∏
k=1

(
cos

(2r + 1)π
2N + 1

− cos
(2k − 1)π
2N − 1

)

−B
(√
AB

)N−1 sin (2N−1)(2r+1)π
2(2N+1)

sin (2r+1)π
2(2N+1)

,

P ′N+1(−βr) =−
(
A+B − 2

√
AB cos

(2r + 1)π
2N + 1

)(√
AB

)N−1

×


(−1)r2−(N+1)(2N+1)

(
1+cos (2r+1)π

2N+1

)
4
(

cos (2r+1)π
2N+1 −cos π

2N+1

)
cos (2r+1)π

2(2N+1) sin (2r+1)π
2N+1

, r < N ,

2−N (2N+1)

−2
(

1+cos π
2N+1

) , r = N ,

where Cn and Dm,n are defined as in (3.17) and (2.8), respectively.

4. Conclusion

Transient analysis of the master equation plays a vital role in several physical
problems. The exact transient solution of the concentration of molecules in chemical
kinetics of a sequence of first-order reactions with end effects is outlined. The above
solution involves roots, which are found analytically in closed form irrespective of
the order of matrices involved. This is in contrast with the computational difficulties
encountered for some values of the parameters, because the diagonal elements of the
underlying matrix become large; making the roots large and thus causing overflow
while running the program.
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